LESSON PLAN -SECONDARY

Teacher Candidate: Brianna Larmore

Grade Level: $8 \quad$ Subject/Content: Math $8 \quad$ Title: Scientific Notation
CONTEXTUAL FACTORS (e.g. ethnicity, gender, exceptionalities, ELL, GATE, etc.) which need differentiation in instruction and assessment.

Well-rounded classroom

- Helpless hand-raisers (Leslie, Katelyn)
- Blurters (Todd, Arik, Jon, Damick, Tyler)
- Won't share/shy (Jesus, Jada, Maddi)

WALK-AWAY (what do I want students to know, understand, and be able to do?)

Content Walk-Away:

SWBAT:

- Change numbers from expanded form to scientific notation
- Explain the differences between negative and positive exponents for scientific notation
- Understand the repercussions of 1 number difference with exponents

Reading/Language Walk-Away:

- Definition of scientific notation

ASSESSMENT EVIDENCE (formative/summative checks for learning) (Match the Content Walk-Away)	Modifications/Accommodations (ELL, IEP, GATE, etc.)
10 problems from the worksheet that I edited off of mathgoodies.com 5 together in small groups (4 students: 1 high achiever, 1 low, and 2 middle) Second 5 done alone, before the end of class. $>70 \%$ is considered proficient, each answer to problems $3 \& 4$ are worth 5%, loss of the negative means the entire problem in marked wrong (the difference between an atom and the universe was stressed) Informal assessment during collaborative work-time: - Did student do some of the work alone, or just copy? - Was student able to explain their reasoning when asked? - Did student show any interest/involvement in website information?	Try to encourage quieter students to show the others how one works. Arik, Jon, and Todd tend to take over and answer all the group's questions. They like to tell others what to do, see if they can listen and correct instead.

NOTES TO TEACHER			
What do I need to remember to do?	Materials to have ready?	Approximate time needed for lesson?	
\bullet Label steps	\bullet Load Scale 2	$\bullet 70$ minutes	
$\bullet \quad$ PRINT	\bullet Load YouTube		

DATA OUTCOMES

Student	$\underline{\text { Percentage }}$	$\underline{\text { Student }}$		Percentage		$\underline{\text { Student }}$

[^0]Average Score 59\%. 42 Students.

COPIES OF COMPLETED WORK AND SCORING GUIDE

Scoring Guide:

MRS. GlOSSER'S Math Goodies

Number Theory Worksheet: Scientific Notation

Write the number(s) given in each problem using scientific notation.

1. The human eye blinks an average of $4,200,000$ times a year. \qquad
2. A computer processes a certain command in 15 nanoseconds. (A nanosecond is one billionth of a second.) In decimal form, this number is 0.000000015 . \qquad
3. There are 60,000 miles $(97,000 \mathrm{~km})$ in blood vessels in the human body.
\qquad
\qquad km
4. The highest temperature produced in a laboratory was $920,000,000 \mathrm{~F}(511,000,000 \mathrm{C})$ at the Tokamak Fusion Test Reactor in Princeton, NJ, USA.

$$
9.2 \times 10^{8} \mathrm{~F} \quad 5.11 \times 10^{8}
$$

5. The mass of a proton is 0.000000000000000000000001673 grams. \qquad
1.673×10^{-34}
6. The mass of the sun is approximately $1,989,000,000,000,000,000,000,000,000,000,000$ grams.

$$
1.989 \times 10^{33}
$$

7. The cosmos contains approximately $50,000,000,000$ galaxies. \qquad
8. The cosmos contins approximaty $50,000,00,000$ gaias.

$$
1.276 \times 10^{-5}
$$

Write the number(s) given scientific notation in standard form.

9. The age of earth is approximately 4.5×10^{9} years. $4,500,000,0.00$. yr
10. The weight of one atomic mass unit (a.m.u.) is $1.66 \times 10^{-27} \mathrm{~kg}$.
0.00000000000000000000000000166 kg

$$
26 \rightarrow 0 \text { 's }
$$

Copyright in 2009-2010 Mrs. Glosser's Math Goodies, Inc. All Rights Reserved.

Example of Exemplary Work:

Number Theory Worksheet: Scientific Notation

Name Tod
Date

Write the numbers) given in each problem using scientific notation.

1. The human eye blinks an average of $4,200,000$ times a year. \qquad
2. A computer processes a certain command in 15 nanoseconds. (A nanosecond is one billionth of a second.) In decimal form, this number is 0.000000015 .

$$
1,5 \times 10^{-8}
$$

3. There are 60,000 miles $(97,000 \mathrm{~km})$ in blood vessels in the human body.

\qquad km
4. The highest temperature produced in a laboratory was $920,000,000 \mathrm{~F}(511,000,000 \mathrm{C})$ at the Tokamak Fusion Test Reactor in Princeton, NJ, USA.
\qquad F \qquad C
5. The mass of a proton is 0.000000000000000000000001673 grams. $1,673 \times 10^{-24}$
6. The mass of the sun is approximately $1,989,000,000,000,000,000,000,000,000,000,000$ grams.

$$
\begin{equation*}
1,989 \times 10^{33} \tag{g}
\end{equation*}
$$

7. The cosmos contains approximately $50,000,000,000$ galaxies. 5×10^{10} 1.276×10^{-5}

Write the numbers) given scientific notation in standard form.

9. The age of earth is approximately 4.5×10^{9} years.

10. The weight of one atomic mass unit (a.m.u.) is $1.66 \times 10^{-27} \mathrm{~kg}$.

$$
.00000000000000000000000006166
$$

Example of Proficient Work:

Mas Glosseres

Math Goodies

Name

Date

Write the numbers) given in each problem using scientific notation.

1. The human eye blinks an average of $4,200,000$ times a year.

2. A computer processes a certain command in 15 nanoseconds. (A nanosecond is one billionth of a second.) in decimal form, this number is 0.000000015 .

3. There are 60,000 miles $(97,000 \mathrm{~km}$) in blood vessels in the human body.
 mi

km
4. The highest temperature produced in a laboratory was $920,000,000 \mathrm{~F}(511,000,000 \mathrm{C})$ at the Tokamak Fusion Test Reactor in Princeton, NJ, USA.
\qquad F
5. The mass of a proton is 0.000000000000000000000001673 grams.

6. The mass of the sun is approximately $1,989,000,000,000,000,000,000,000,000,000,000$ grams.

7. The cosmos contains approximately $50,000,000,000$ galaxies.

Wite tha number(a) piren wcientife notation in standapd form.

Example of Basic Work (about average):
$-31 / 2$
Ma. Mks Glosser's
$\pi \mathrm{G}$ Math Goodies
Number Theory Worksheet: Scientific Notation
Name \qquad Date

$$
10-16-13
$$

Write the numbers) given in each problem using scientific notation.

1. The human eye blinks an average of $4,200,000$ times a year.

2. A computer processes a certain command in 15 nanoseconds. (A nanosecond is one billionth of a second.) In decimal form, this number is 0.000000015 .

3. There are 60,00 miles $(97,000 \mathrm{~km})$ in blood vessels in the human body.
\qquad mi \qquad

$$
9.7 \times 10^{36}
$$

4. The highest temperature produced in a laboratory was $920,000,000 \mathrm{~F}(511,000,000 \mathrm{C})$ at the Tokamak Fusion Test Reactor in Princeton, NJ, USA.

$$
9.2 \times 10^{8}=
$$

$$
5.11 \times 11^{8}
$$

$$
\mathrm{c}
$$

5. The mass of a proton is $0: 000000000000000000000001673$ grams.
$1 /$ A. The mass of the sun is approximately $1,989,000,000,000,000,000,000,000,000,000,000$ grams.

$$
\frac{1.9 \times 10^{33}}{\frac{5.0 \times 10^{10}}{1.276 \times 10^{-5}}}
$$

7. The cosmos contains approximately $50,000,000,000$ galaxies.
8. A plant cell is approximately 0.00001276 meters wide.

Write the numbers) given scientific notation in standard form.
9. The age of earth is approximately 4.5×10^{9} years,

$$
4,500,000,0000
$$

10. The weight of one atomic mass unit (a.m.u.) is $1.66 \times 10^{-27} \mathrm{~kg}$.

Copyright 『 2009-2010 Mrs. Glosser's Math Goodies, Inc. Ail Rights Reserved.
hetp://www.mathgoodies.com

Example of Below Basic:

ME Mrs. Glosser's

国 Math GoodiesName

Date

\qquad

Write the numbers) given in each problem using scientific notation.

3. There are 60,000 miles $(97,000 \mathrm{~km}$) in blood vessels in the human body
\qquad

$$
9.7 \cdot 10^{3^{4}}
$$

km

The highest temperature produced in a laboratory was $920,000,000 \mathrm{~F}(511,000,000 \mathrm{C})$ at the Tokamak Fusion Test Reactor in Princeton, NJ, USA.
\qquad F

$$
5.11 \cdot 10^{68}
$$

C

Write the numbers) given scientific notation in standard form.

9 The age of earth is approximately 4.5×10^{4} years
45 , $0,0,000,000 \mathrm{yr}$
10. The weight of one atomic mass unit (a.m.u) is $1.66 \times 10^{r} \mathrm{~kg}$.

Copyright 3 2009-2010 Mrs Glosser's Math Goodies, Inc. All Rights Reserved.

REFLECTION

On the fifteenth of October, I taught two periods of eighth grade math scientific notation, including when and how it is used. There were 24 male and 18 female students assessed. Class periods were 76 minutes long. My lesson plan was designed to take up the majority of the time. I was given a crash course in "lesson revision" when my mentor teacher informed me just before class that he needed 15-20 minutes of the class period in order to give the students an end of the quarter benchmark exam. Because of this, I shortened the amount of time that the students had to complete their worksheet. I feel that this is the major reason that many of the students received a poor score on the assessment.

I wish I could say that the students walked away knowing the material inside and out. However, I can't. Sixty-two percent of the students that turned in this assignment did not meet my proficiency grade of sixty percent on the paper portion of my assessment.

I had considered asking the students to finish their worksheets at home and return them to school the next class period. However, I decided not to. In part, this decision was made because the students 'everyday teacher' also gave a worksheet for them to complete for homework that evening. (This was another curve-ball to be thrown my way.) I did not think that it would be fair for them to have to complete both, especially since the other worksheet was over forty problems long and contained content they had not yet covered.

While shortening the time that the students were given to complete the worksheet I gave them might have lowered the achievement of proficiency, I feel that it was worth the cost in this case. It allowed me to keep the portion of the class period I had allotted to demonstrating a website intact. This website showed the students the difference that 1 number as an exponent can be, in the real world, in a very visual way.

I am thrilled to say that the interactive, web-based part of the class period went really well. Ninety-eight percent of the students were actively involved and asking questions. In the class where I did this at the end of the period, several students stayed after the bell to look at the project longer.

My mentor teacher had originally planned on continuing into multiplication and division using scientific notation the next class period. However, that was not the case. Several weeks later, when the students returned to scientific notation, it was easier to see that they had indeed retained some of the information which I had attempted to impart on them. More than once, a student corrected another on erroneous statements, such as "I was close. I was only one number off," with responses that like "That's the difference between an elephant and the Eiffel Tower!"

[^0]: * Indicates students that did not attempt the second half of the assignment
 + Indicates students which were struggling severely when I walked by, yet scored well on the assessment

